Recyclability Challenges in “abundant” Material-based Technologies

نویسنده

  • Annick Anctil
چکیده

Much current research in photovoltaic technology is directed towards using “abundant” base metals like copper and zinc (e.g., CZTS or more recently CZTSSe) to overcome the the challenges of material scarcity posed by the use of tellurium, indium, germanium, and gallium in current generation products (e.g., CdTe, CIGS, aSi/thin-film Si). The supply of these materials is limited because they are minor byproducts of the production of copper, zinc, lead. and aluminum, so that their economic production inherently is linked to that of the base metals. But, although the base metals currently are abundant, their reserves are not inexhaustible. In addition to concerns on resource availability, the main sustainability metrics for large-scale PV growth are low cost and minimum environmental impact. As the numbers of photovoltaic installations grow, greatly displacing traditional powergeneration infrastructures, recycling will play an increasingly important role in managing their end-of-life fate, so relieving pressure on the prices of critical materials. Identifying the potential issues in current technologies can help implement a take-backor recycling-program ahead of time. Our work explores the potential for material recycling of various established commercial photovoltaic technologies, along with those under development. It sheds light on a dimension of sustainability that has not been investigated before. Based on entropy analyses, documented by the experience of recycling electronic products, we show that recycling some types of PV modules based on “abundant” materials could be burdened by complexity and lack of value, thereby creating concerns about end-of-life environmental impacts, and resource availability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Water oxidation using earth-abundant transition metal catalysts: opportunities and challenges.

Catalysts for the oxidation of H2O are an integral component of solar energy to fuel conversion technologies. Although catalysts based on scarce and precious metals have been recognized as efficient catalysts for H2O oxidation, catalysts composed of inexpensive and earth-abundant element(s) are essential for realizing economically viable energy conversion technologies. This Perspective summariz...

متن کامل

An Assessment and Prioritization of "Design for Recycling" Guidelines for Plastic Components

The current paper summarizes the results of a study aimed at assessing the effectiveness of design for recycling strategies for plastic components. Interviews and site visits were conducted with computer disassemblers and plastics recyclers based in the United States and Europe to investigate the effectiveness of design for recycling guidelines. Both manual and automated recycling technologies ...

متن کامل

Re-design of Downstream Processing Techniques for Nanoparticulate Bioproducts

There has been much interest generated in the recovery of nanoparticulate (nanoparticle) bioproducts(Second generation of biotechnological products) such as plasmid DNA and viruses as putative gene therapyvectors, macromolecular assemblies as drug delivery vehicles and virus-like particles as vaccine components.Such product must be manufactured in advanced stages of purity, ma...

متن کامل

Hydrolysis of cellulose to glucose by solid acid catalysts

As the main component of lignocelluloses, cellulose is a biopolymer consisting of many glucose units connected through β-1,4-glycosidic bonds. Breakage of the β-1,4-glycosidic bonds by acids leads to the hydrolysis of cellulose polymers, resulting in the sugar molecule glucose or oligosaccharides. Mineral acids, such as HCl and H2SO4, have been used in the hydrolysis of cellulose. However, they...

متن کامل

Multifunctional Single-Phase Photocatalysts: Extended Near Infrared Photoactivity and Reliable Magnetic Recyclability

A practical photocatalyst should be able to integrate together various functions including the extended solar conversion, a feasible and economic recyclability, and above the room temperature operation potential, et al., in order to fulfill the spreading application needs in nowadays. In this report, a multifunctional single-phase photocatalyst which possesses a high photoactivity extended into...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012